esenfrdeitptru

Buscar

Desafo 3 Editable

 

Antecedentes

Un ROV (vehículo operado por control remoto) es un robot submarino no tripulado y conectado a una unidad de control y potencia en la superficie por medio de un cable umbilical [1] . Así, a través del cable umbilical se envía información en las direcciones para controlar el movimiento y realizar actividades de monitoreo mediante instrumentos instalados en el equipo (ver figura 1). Un ROV está compuesto en general por un vehículo, enlazado a una estación de control y operado en superficie por medio de una línea umbilical, un sistema para controlar la dinámica del tendido del cable, un sistema de despliegue, y una fuente de alimentación de energía [2] .

 

Figura 1 Diagrama general de un ROV

Figura 1: Diagrama general de un ROV.

 

Uno de los campos de acción que incluye los ROV es la inspección y mantenimiento de tuberías submarinas, protocolos petroleros, infraestructura, facilidades y plataformas offshore mediante un sistema de visión artificial [3]

Un ROV de inspección está diseñado para realizar tareas de monitoreo mientras se navega. Una misión de inspección puede consistir en buscar imágenes con una o varias cámaras, para la revisión de instalaciones submarinas como estructuras metálicas, tuberías, cables, equipos y plataformas, etc. La tecnología de captura de video e imágenes se encuentra muy desarrollada, esto permite la obtención de imágenes con alta resolución, colores modificados y el procesamiento en tres dimensiones. Sin embargo, a partir de cierta distancia, que dependen del grado de turbidez del agua, los objetos submarinos son difícilmente distinguibles [4]. Es por esto, que algunos trabajos de investigación se han enfocado en el desarrollo de algoritmos que pueden ser integrados al sistema de visión artificial con el propósito de mejorar su funcionalidad.

Considerando el potencial de los ROV, Ecopetrol tiene como objetivo fortalecer la capacidad de innovación y desarrollo tecnológico en temas relacionados con la robótica submarina en el marco del "Programa estratégico para el desarrollo de la tecnología robótica orientada a la exploración petrolera de los fondos marinos colombianos" .

El presente desafío contempla como reto el desarrollo e implementación de un sistema para inspección en línea de facilidades submarinas mediante visión artificial como apoyo al proceso de monitoreo de integridad de infraestructura submarina. El sistema de inspección debe tener la capacidad de operación en línea, detección, clasificación y localización del área o zona bajo inspección e identificación de posibles anomalías como pérdida de material, corrosión o grietas. En la figura 2 se ilustra un ejemplo para el caso de inspección de tuberías subacuáticas.

 

                                                                       Figura 2 deteccion  Figura 3 anomalia

a.) Detección y clasificación del área bajo inspección. b.) Identificación de anomalía

Figura 2: Inspección de tubería submarina mediante sistema de visión artificial [5] .

 

Referencias

[1] Wang, Wei y Christopher M. Clark. "Modelado y simulación del vehículo submarino VideoRay Pro III". OCÉANOS 2006-Asia Pacífico . IEEE, 2007.

[2] Madero, D. y JJ Durán. "Diseño de un Prototipo ROV (vehículo operado por control remoto) subacuático experimental". Trabajo de grado, Escuela de Ingeniería Mecánica, Universidad Industrial de Santander, Tech. Representante 75 (2012).

[3] Manjunatha, M., Selvakumar, AA, Godeswar, VP y Manimaran, R. (2018). Un robot submarino de bajo costo con pinzas para la inspección visual de la superficie de la tubería externa. Procedia informática, 133, 108-115.

[4] Moreno, HA, Saltarén, R., Puglisi, L., Carrera, I., Cárdenas, P. y Álvarez, C. (2014). Robótica submarina: Conceptos, elementos, modelado y control. Revista Iberoamericana de Automática e Informática industrial, 11 (1), 3-19.

[5] Braathen, NF y Sandford, AJ (1986). Inspección de tuberías por ROV. En Tecnología sumergible (pp. 313-318). Springer, Dordrecht.

 

Objetivos y Meta

En el presente desafío, los participantes desafían desarrollar un Prototipo TRL-3 de sistema de visión artificial para inspección de tuberias submarinas. Realizar la inspección en línea de la tubería, demarcar la zona o área de la tubería bajo inspección mediante un recuperador o segmentación de área, identificar posibles anomalías como corrosión, pérdida de material o tensión y permitir el monitoreo en línea en la superficie de los resultados de visión artificial

El desarrollo del sistema debe incluir el manual etiquetado o automático de las fotografías de luz visible, preprocesamiento, programación del modelo para visión artificial, entrenamiento del modelo para visión artificial, evaluación, sintonía de parámetros e inferencia.

 

Alcance y Cobertura

Un sistema de visión artificial facilita la inspección en línea de los equipos y facilidades submarinas, mejora la identificación, clasificación y localización de características de interés asociadas al objeto de estudio, que corresponde a un tramo de tubería subacuática.

El alcance del desafío comprende las siguientes actividades:

yo. Desarrollo de un algoritmo de visión artificial para procesamiento de video que permite la clasificación y localización de tubería subacuática mediante la respetiva demarcación sobre el video.

ii) Desarrollo de un algoritmo de visión artificial para procesamiento de video que permite la clasificación y localización de anomalías como corrosión, pérdida de material o agrietamiento en la tubería subacuática a veces una inspección.

iii) Entrenamiento y realización de pruebas de validación de los modelos y algoritmos de visión artificial utilizando video y fotografías capturadas con cámara subacuática de una sección de tubería conocida sumergida en piscina.

iv. Realización de pruebas de funcionalidad y funcionamiento en ambiente subacuático de los algoritmos de visión artificial durante la inspección con cámara subacuática de una sección de tubería de prueba sumergida en piscina. Las secciones de tuberías pueden contener anomalías (corrosión, grietas, pérdida de material, etc.) localizadas en posiciones no definidas previamente.

El desarrollo, etiquetado, entrenamiento, validación y pruebas de los modelos y algoritmos que conforman el sistema de visión artificial contemplando la realización de las siguientes actividades:

  • Construcción de base de datos de video y fotografías, y definición de las clases y / o etiquetas para la generación de los modelos de clasificación y localización. Se debe seleccionar una metodología para la asignación de las clases en las imágenes de la base de datos construida. Además, la metodología de etiqueta, así como la precisión de las etiquetas será exactamente en la valoración final.
  • Definición e implementación del preprocesamiento necesario sobre el video y fotografías para ingreso a la etapa de clasificación y localización del sistema de visión artificial. Los participantes podrán utilizar diferentes técnicas de procesamiento a las imágenes como: ajuste de tamaño de las imágenes, recortes, rotaciones, ingeniería de características u otra metodología que propongan.
  • Entrenamiento de los modelos propuestos para la clasificación y localización. En este, los participantes, libertad de elección de la arquitectura y parámetros de los modelos, así como la metodología de selección del mismo.
  • Una vez desarrollado el sistema de visión artificial, este será a veces una prueba con un segmento de tubería subacuática desconocida para los participantes, con el cual será calculado la métrica de precisión en la clasificación y localización.
  • Los integrantes podrán utilizar modelos genéricos pre-entrenados para mejorar el rendimiento de las etapas de clasificación y localización del Prototipo de sistema de visión artificial desarrollado.
  • Los algoritmos de entrenamiento serán necesarios en el lenguaje de alto nivel Python y podrán utilizar cualquier marco de código abierto (por ejemplo, Keras, Theano, Caffe, CNTK, TF, Open CV, entre otras).
  • El Prototipo de sistema de visión artificial para inspección debe contar como mínimo con una cámara de video subacuática de bajo costo y un computador.
  • El concurso cofinancia la compra de materiales hasta por US $ 100.
  • El concurso suministrará la tubería para entrenamiento, validación y pruebas de los modelos y algoritmos del Prototipo de visión artificial a desarrollo.
  • El concurso facilita el acceso a la piscina o estanque para el desarrollo de los Prototipos del desafío.
  • Tecnoparque del SENA facilita las instalaciones y asesoría para el desarrollo de los Prototipos de visión artificial.

 

 

Documentos de información general 

 

Consulte los términos de referencia acá. Desafío 3 - Visión artificial 

18 de julio de 2019

Adenda No. 01 al Desafío 3 - Visión artificial - 16 de agosto de 2019

16 de agosto de 2019

Consulte los términos de referencia acá. Desafío 3 - Visión artificial Versión 2

16 de agosto de 2019

Adenda No. 02 al Desafío 3 - Visión artificial - 2 de septiembre de 2019

  2 de septiembre de 2019

Consulte los términos de referencia acá. Desafío 3 - Visión artificial Versión 3

  2 de septiembre de 2019

Desacargue la caracterización del Desafío 3

18 de julio de 2019



 

Documentos para la inscripción de los equipos 

Grupos y Centros de Investigación 

Carta de presentación y aceptación

Designación del líder responsable

Registro de equipo de trabajo

 

Alianzas Interinstitucionales

Carta de presentación y Aval

Carta de compromiso de instituciones en Alianza

Registro de equipo de trabajo

 

Empresas

Carta de presentación y aceptación

Designación del líder responsable 

Registro de equipo de trabajo

 

Centros de Desarrollo

Carta de presentación y aceptación 

Designación del líder responsable

Registro de equipo de trabajo  

 

Pin It

Instituciones Miembros

unetealared@unired.edu.co

Carrera 19 No. 35 - 02 Oficina 206

Bucaramanga, Santander

(57)(7) 630 3053 - 317 665 2087